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It is demonstrated that Lie point symmetries associated with a nonlinear equation 
for short waves in three dimensions generate an infinite-dimensional Lie 
algebra--a loop Algebra. Classification of the independent sets of the subalgebra 
is done through the adjoint action of the corresponding generators. Different 
forms of similarity solutions are discussed. 

1. INTRODUCTION 

The importance of Lie symmetry in the analysis of nonlinear partial 
differential equations was realized long ago (Bluman and Cole, 1974). 
Initially all these algebras were finite-dimensional, but it was later seen that 
some symmetry generators do contain arbitrary functions of the time variable 
and it was also observed that a special class of dependence on this arbitrary 
function does lead to an infinite-dimensional Lie algebra which is isomor- 
phic to a loop Algebra (Kac, 1985)i Here we discuss this in three dimensions 
from the viewpoint of Lie symmetry and observe that the generators of 
point symmetry transformations do close on an infinite-dimensional 
algebra. 

2. FORMULATION 

The equation under consideration is written as 

2KqSx + qSyy + 205x, - 2 ( x  + qSx) qSxx = 0 (1) 
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An important feature of  this p.d.e, is that it is nonautonomous due to its 
explicit dependence on coordinate variable x. But one can easily observe 
that this nonautonomous equation is deducible from the following 
Lagrangian: 

1 3 2 1 2 
= (49,49x -~49x - (2) x49 x + ~49y) exp[2(k + 1 ) t] 

where k is an arbitrary constant. The Lie point symmetries of this equation 
were originally studied by Khamitova (1982). Let us recapitulate some o f  
the salient features of this analysis. The generator of transformation is 

X = r/(t, x, y, 49, 49~, 49y)0/049 (3) 

where r/ is the following function: 

n = cl 49, + (c2x + tz'y -P)49x + (Jc2y - tz)49,, - 2e249 

+ ( i z " + t x ' ) x y - ( p ' + p ) x - � 8 9  - (4) 

where Cl and c2 are constant and/x,  p, A, and o- are arbitrary functions of 
t, and dk is the operator 

d 2 + d 
1))S+k (5) 

Now by a basic theorem of  Lie point transformation one can ascertain that 
the transformation generated by 07) is equivalent to the transformation 
through the following Lie operators: 

X , = - t z ' Y - ~ x + t z  + xy ( t z"+tz ' )  - dk(tx') 049 

X2=~" + [ y 2 d k ( r ) - x ( ' / + r ) ]  a-- ~ 

O 
X3 = Ay 0---~ 

0 
X4 = o ' - -  (6) 

o4, 

X5 = 9a O + 3 [ ( a '+  4a )p - (a" - a')y2] 9--- 
Ot OX 

0 F x 2 
+ 6 ( a ' - a ) y ~ y - 3  L(a '+  8a)49 +-~- ( a " -  a') 

- ( a " - a ' ) x y 2 +  ( a " '+  2a . . . .  a " - 2 a ' )  0--'-~ 
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We first compute the commutat ion rules between these generators; the result 
of  such a computat ion can be displayed as: 

[Xl(/d, ), X2(T)] 

[X,(~) ,  X~(a)] 

[X1(~), X,(o,)] 

[XlO*), X~(a)] 

[x2(~), x , ( a ) ]  

[X2(r), 

[X~(~'), 

[x,(;~), 

[x~(A), 

[X4(o), 

= X3Etx ' r ' -  T/x"+ 2/xdk(r)] 

= x4[~A ] 
= 0  

= 3Xl [u ' (Za '  - 5a)] 

= 0  

x4(o-)] =0  

Xs(a)] = 3X=[ ' r (a ' -4a)  - 3'r'a] 

X,(o')] = 0 

Xs(a)] = -9X3[Z (a '+  2a) + ),'a] 

Xs(a)] = -3X4[o-(a' + 8a) + 3 o"a ] 

(7) 

[ x , ( l , , ) ,  x , O , 9 ]  = x = ( ~ t ,  ~ - ~ , , ~ )  

[ x ~ ( ~ , ) ,  X = ( r g ]  = X 4 ( r ~  - ~- ,~)  

[X~(;t  O, x ~ ( a g ]  -- 0 

[X4( 'y , ) ,  X4(0"2) ] = 0 

[Xs(al) ,  Xs(a2)] = 9Xs(a la '~ -  a~a2) 

Equations (7) evidently show that the generators form a Lie algebra, but 
not the usual one, as the arguments occurring on the right-hand side are 
actually different. Since the functions /z, A, o-, and a are all arbitrary and 
if we make an assumption that they are analytic functions in t, then equation 
(7) is nothing but a form of  the loop or Virasoro algebra (Chau, 1983), For 
example let us set r, or, etc., each equal to t m or tn; then the commutat ion 
rules are 

[X,(tm),  X~(t~ = X4(t  m+~ 

[x , ( tm) ,  x , ( t ~  = ( m - n )x=( t m+~ 

[ Xz(  tm), X2(r -=- ( m - n )X4( t m+"-') 

[Xs(tm), Xs(t")]  = 9(n - m ) X s ( t  m+"-') 
(8) 

[X4(t m), Xs( t" )]  -= - 3 ( 3 m  + n)Xa(t  m+ ' - ' )  - 24X4(t m+") 

[X3(t m), Xs( t" )]  = - 9 ( m  + n)X3( t  re+n-l) - 18X3(t m+n ) 

[Xz( tm) ,  Xs(t")]  -=3(n - 3 m ) X 2 ( t  m+"-') - 12X2(t '~+" ) 

[X,(tm),  Xs(t")]  -= 6 m n X , (  t m+n-2) - 15mX, (  t ~+~-1) 
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all other commutators being zero. Before proceeding further, we try to 
identify the basic algebra underlying our loop algebra. If we denote the 
generator set by X ~ X ~ X ~ X ~ and X ~ obtained from equations (7) by 
setting the arbitrary functions equal to unity, then it immediately follows 
that (Jacobson, 1966) 

r = {x ~ , X ~ , X ~ 

generates a radical (Abelian subalgebra) and 

s s  = { x ~ , x ~ 

yields a semisimple part. Furthermore, we have the Levi decomposition; 

[SS, SS] C SS] 
[SS, r] C ; I (9) 

[r, r] C 

so that we can say 

0 0 o o {X10, X 2  0, X 3  ' X 4  ' X 5  } S S ( X O l ,  0 0 : Xs}@ r{X2, X3, X4 ~ 

0 0 �9 Now, {X1, X5} is seen to be the generator of right translation algebra (Patera 
et al., 1976). Thus, we may ascertain that our infinite-dimensional algebra 
is really generated by the direct product 

( S S { X  o, o o o Xs}@r{X2, X3, X~ )Q L{ t, t -1} 

where L{t, t -1} represents the space of Laurent polynomials in r In the 
following we will demonstrate in detail how one can reduce these different 
Kac-Moody-type generators to simple Lie generators through the adjoint 
action of the corresponding group over the algebra. 

3. ADJOINT ACTION AND REDUCTION 

The problem noted in the previous section is actually the problem of 
constructing the so-called optimal system Ls that is the set of representatives 
of the class of S-dimensional subalgebra L,, which are pairwise nonconju- 
gate by the inner automorphism group. To proceed with the actual computa- 
tion, we first observe that the adjoint action is usually given according to 
the formulas (Olver, 1985) 

= ~ e"- (adv)"(Wo)  Ad(exp(ev)) Wo n=o n! (10) 

where (adv) Wo = [ V, Wo]. 
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We enumerate  the full adjoint  operat ion results: 
(5.1) Ad(exp)[eXs(a)] X,(Ix) = X,(IX~) 

Ix~ = p.( t ( t ' ) )  

t(t') =p- l [p( t ) -3e]  

f "az  
p( t ' )  = - j , 0  3a(z )  

(5.2) Ad(exp)[eXs(a)]) X2('c)=X2(r~) 

v ,=z(t( t ' ) )  [ a(t') ]l/2exp{4[t(t,)_t,]} 
La(t(t'))J 

so  

X2(~'~) = r(t(t')) F| a(t') 111/3 exp{4[t(t ')  _ t'] 
L a( t( t') )_] 

(5.3) 

O _{y,2dk[(t(t,)) ( a(t') ,]l/3 
ax' \a( t( t ' ) ) /  

x exp{~[ t( t,) _ t,]} ] _ x, d } 0 
dt' .r~ - x'.;~ 049--~, 

Ad(exp[  eXs(a)]) X3(A ) = X3(A~) 

~(t(c)) 
A~ = A ( t ( t ' ) )  ---TTTC-,,exp{2[t(t')- t']} a u )  

so we can write explicitly 

a(t(t')) 
X3(A~) = A (t(t')) ~ exp{2[t(t') - t ' ] } y ' - -  

t'( t ) = (3p )-~[ 3o( t ) - 9 e ]  

(5.4) Ad(exp[eXs(a)]) X4(o-) =X4(cr~) 

F~(,(c)) l  ,j3 o-~ = ~ r ( t ( t ' ) )  l ~ J  exp 3 
8[t(t')-t'] 

0 

a4)' 
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ra(t(t ,))]w3 8[t( t , ) - t ,]  a (14) 
x4(o-~) = o-(t(t')) L ~ J  exp 3 a~ '  

Ad(exp)[eXs(a)] Xs(a) = Xs(a~) where 

with t'(t) written as 

c~ = a( t( t') )a( t')/ a( t( t') ) 

t'( t) = (3p)-'3[p( t) - 9 e ]  (15) 

Now we know from Neuman's  theorem that one can always choose a 
function a(t) such that in equation (12) we can have 

r a(t') ],/3 
1 " ( t ( t ' ) )  L a(t(t;i)_l 

Then the generator X2('re) reduces to 

0 
2 2 ( ~ )  = ~x,+ {y K - x } - -  

4[ t(t ') - t'] 
exp - 1 

3 

0 
(16) 

0&' 

a generator of the finite-dimensional algebra. With another choice of a(t) 
we can have, from equation (11), 

2,(/~) = a / a y  

the translational operator in the y direction. Similarly, if we choose a(t) 
so that 

a(t(t')) . . . .  
A (t(t')) ~ exp tz [ t~ t ' ) -  t']} = 1 

then we observe that the generator X3 reduces to 

~ = y'o/a~' 

So with the help of the action of the adjoint operation of the group over 
the algebra we can reduce the generators to simple forms and hence can 
prove their mutual equivalence under the adjoint action. 
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4. SOLUTION GENERATED BY THE GENERATORS 

Let us now try to build up the different types of solutions generated 
due to the invariance class generated by the various generators. 

(1) X4: 

ch'( t', x', y') = c~(x, t, y)  + ecr( t) 

(2) x 4 + x 3 :  

q b ' ( t ' , x ' , y ' ) = d p ( t , x , y ) + e [ ~ r ( t ) +  A( t )y]  

(3) ~ + x ~ + x ~ :  

~' ( t ' ,  x' ,  y ')  : d~[t, x - e'r(t), y] + e[y 'dkO'( t ' )  +y'A (t') + cr(t')] 

- ~[~'(t ')+ 7 ( c ) ] [ x ' + ~ ( t ' ) ]  

Similar computations can be performed with the other combinations 
of generators. But we can also eliminate the parameter e and express the 
corresponding nonlinear field 4) as a known function of (x, t, y). 

(4) X 2 - ~ - X 3 - ~ X 4 - } - X I :  

t ' = t  

x ' =  x + eD'(O -- Ix'(t)y --�89 (t)] 

y ' = y + e i x ( t )  

qS'(t', x', y') = q~[t', x ' - e { r ( t ' ) -  Ix'(t ')y '  
1 t t t 

-~eix ( t) ix(t  )}, y ' -  e ix ( t ' ) ]+[ ix"( t ' )+  Ix'(t')] 

x [ex 'y '+ �89  ~'(t') - Ix'(t')y'} 

+ �89 3{IX (t')~'(t') - tx (t')IX'( t ')y' 

- �89 t ')ix( t')} -~eaix ' (  t')ix2( t') ] 

1 ,3 1 4 3 t 3 2 t2 , - ~ [ e y  +ze  IX (t ) + s e  y I x ( t )  

+e  3y'ix2( t') ]dk(ix'( t') ) + [ ey '2 

+e2y' ix ( t ') + �89 t') ]dk(.r( t') ) 

- [ ~ ' ( c )  + ~-(c)][~x' + �89 

-IX'(  t ')y'} - ~ 6IX,( t')ix ( t')] 

+ e t a  ( t ' ) y '+  cr(t') +~eA (t')ix(t')] 
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(5) x=+x~+x4+x~+x,: 
t'(t) = O- ' [~ ( t )  + 9 e ]  

[a(t'(t))e'12/3 
y ' ( t ,y )=[y+G(t ' ( t ) ,  t)] L ~ J  

x ' ( t ,x ,y)=(x+al /3( t )e-4t /3 [ f  Q(t', t'(t),t,y)a-'/3(t')e4t'/3dt ' 

__ f Q(t,(t), t,y)a_l/3(t) e4t/3 dt]~(a(t'(t)))l/3 ( e' x~4/3 
j \--~] \ e,'(,---5 ] 

Set 

and 

l (a(,)V" f" ~(t'(t), t )=-~\ - -~- ]  4 , i.~(S)[a(S)]-5/3e2/3Sds 

Q(t', t'(t), y) 
1 2{a(t'(t))e')4/3(a"(t')-a'(t ')] 

= - ~  Y ~ ~ J ~ ~5 J 
__y ~ ( a( it(t)) e_.....~ t ~ 2/3 ~jbt(it._.) 

9 [ \  a(t)e r(') I a(t') 

+6,~(c(t),t)\ ~ }  \ a~-5 /3 
(a(t '(t))et~ 4,3 t') -- a'(t')'~ 

1 , {a(t'(t))e'] =/3 (t,t'(t')] 1 ~'(t') 
--~ tr(t (t), t) \-~-(-~e-7,~ ] \ -a-~/-~ 9 a(t') 

5. DISCUSSIONS 

In the above analysis we considered the infinite-dimensional Lie algebra 
generated by the symmetry transformations of the equation of short waves. 
The corresponding reduction of the algebra via the adjoint action of the 
group was shown to be useful in classifying the various subalgebras. The 
solutions generated by these transformations were constructed in detail. 
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